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This paper presents a random-walk-based feature extraction method called commute time guided trans-
formation (CTG) in the graph embedding framework. The paper contributes to the corresponding field
in two aspects. First, it introduces the usage of a robust probability metric, i.e., the commute time (CT),
to extract visual features for face recognition via a manifold way. Second, the paper designs the CTG opti-
mization to find linear orthogonal projections that would implicitly preserve the commute time of high
dimensional data in a low dimensional subspace. Compared with previous CT embedding algorithms,
the proposed CTG is a graph-independent method. Existing CT embedding methods are graph-dependent
that could only embed the data on the training graph in the subspace. Differently, CTG paradigm can be
used to project the out-of-sample data into the same embedding space as the training graph. Moreover,
CTG projections are robust to the graph topology that it can always achieve good recognition perfor-
mance in spite of different initial graph structures. Owing to these positive properties, when applied to
face recognition, the proposed CTG method outperforms other state-of-the-art algorithms on benchmark
datasets. Specifically, it is much efficient and effective to recognize faces with noise.

Crown Copyright � 2011 Published by Elsevier Inc. All rights reserved.
1. Introduction

Over last decades, many statistical and optimization models
have been extensively used as a feature extraction step for pattern
recognition and visual perception. Among these approaches, one
prevalent paradigm is the subspace analysis, the aim of which is
to preserve the statistical property of the high dimensional data
in a low dimensional subspace [1]. Such methods include Principal
Component Analysis (PCA) [2], Linear Discriminant Analysis (LDA)
[3] and Non-negative Matrix Factorization (NMF) [4]. Although
these typical algorithms have been successfully applied to many
disciplines, they are based on linear statistical models that cannot
be extended to reveal the non-linear relationships among data.
Therefore, manifold learning methods are proposed to represent
data distribution via a graph topology [5].

A manifold is locally linear, but globally non-linear. Different
manifold learning algorithms have been proposed around the
years; these include Isomap [6], locally linear embedding (LLE)
[7], and Laplacian eigenmap (LE) [8]. However, most existing man-
ifold algorithms cannot handle the out-of-sample data [9]. They
only project the training samples on the graph into an embedding
subspace but cannot generalize the learning results to test sam-
ples. Accordingly, these manifold embedding algorithms are effec-
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tive clustering tools but are not appropriate algorithms for
recognition.

In order to enhance the generalization ability of typical mani-
fold learning algorithms, locality preserving projection (LPP) [9]
was proposed as an extension of Laplacian eigenmap (LE) [8]. LPP
is designed to preserve the locality of graph connections via a pro-
jection matrix. However, it could only preserve the locality of data
while ignoring the relationship between samples that are not di-
rectly connected. Besides, although LPP is implemented on the
graph, it also relies on the Euclidean distance between nodes.1

Some recent works indicated that non-Euclidean metric on the man-
ifold could reveal the essence of data much better [10].

As stated above, two challenges of manifold learning are: (1)
how to generalize the learned mapping function to out-of-sample
data that are not on the training graph and (2) how to find a robust
metric/similarity to reveal the relationship of both the connected
and non-connected nodes on a graph. To address these two points,
in this paper, we propose a commute time guided (CTG) transfor-
mation for manifold learning.

In our CTG model, the commute time (CT) of random walk is
adopted as a robust metric to evaluate the similarities between
all pairs of nodes on the graph. CT is a probabilistic distance which
records the average time required for a random walk to travel
around a pair of nodes on the graph and thus is very robust to
noise. Therefore, representing nodes affinities by CT relies less on
ights reserved.

1 In LPP, the local relationship between nodes are measured by some kernel
functions, like Gaussian, embedded with Euclidean distance.
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the initial graph structure and is less sensitive to the noisy distur-
bances in the training data. Then, inspired by the framework of LPP
[9] and graph embedding (GE) [1], an orthogonal linear projection
matrix is optimized to implicitly preserve the commute time of the
high dimensional manifold in a low dimensional subspace. The im-
plicit preservation means that we are not going to strictly keep the
same CT quantity in the mapping space. Instead, in the optimiza-
tion, CT is used to guide the embedding that a large CT between
nodes in the high dimensional space will induce a large Euclidean
distance in the mapped space and vice versa.

Owing to the generalization ability of CTG model, we can extend
the power of CT to recognition tasks. In this paper, we apply the
CTG model to recognize faces. The performance of the proposed
method will be evaluated on different graph topologies and com-
pared with other graph similarities. Besides, on four benchmark
face datasets, the CTG will be compared with other state-of-the-
art recognition algorithms. It is concluded that the CTGface ex-
tracted via commute time is an efficient and effective feature for
face recognition. Moreover, the CTG method is especially robust
and efficient to recognize faces with noise.

1.1. Related work

Although commute time for data embedding is a long standing
topic in computer vision, our approach is quite different. Previous
works [11,12] first construct the data graph and compute an affin-
ity matrix recording the commute time between each pair of
nodes. Then, the commute time matrix is decomposed in terms
of spectral embedding techniques, e.g., ratio cut [13] or normalized
cut [14].

Spectral embedding guarantees that original commute time will
be preserved in the embedding space. In [12,11], CT embedding
technique has been proven to be a specific form of kernel PCA by
CT kernels. In [11], Qiu and Hancock revealed the relationship of
CT embedding and LE. The classic CT embedding algorithm has
been successfully applied to many practical tasks including image
segmentation [15], motion segmentation [11] and image represen-
tation [16]. But in all these interesting applications, the CT embed-
ding technique is only adopted as a powerful tool for data
clustering.

Different from previous CT embedding algorithms, our CTG has
the following advantages. First, it is a graph-independent algo-
rithm. CTG has the potential to generalize the learning ability to
the out-of-sample data. Besides, it is less sensitive to the initial
graph structure. Experimental results (see Section 4.2) verify that
CTG outperforms other benchmark algorithms on different graph
topologies, e.g. KNN graph and sparse graph. Finally, it is possible
to explicitly define a closed-form solution to the CTG optimization
in terms of eigen-decomposition, which greatly speeds up the
training procedures.

An early conference version of this paper has been published in
[17]. It just provided the preliminary idea of the random walk for
face recognition. In this paper, we enhance the discussions from
both the theoretical and experimental perspectives. First, a thor-
ough and rigorous mathematical formulation on CTG optimization
is provided in the paper. The formulation in [17] is only based on a
one dimensional projection vector. Then, the meaning of the 1D
projection is extended to a general matrix case. In this paper, the
formulation on CTG optimization is unified into a matrix frame-
work of trace computation, which is more general and rigorous. Be-
sides, the experimental discussions are greatly enhanced. In [17],
the experiments were only based on a KNN graph. In this paper,
the experiments are conducted on more graph topologies and the
commute time metric is compared with other graph metrics. More-
over, we compare our method against a number of state-of-the-art
competitors on more benchmark datasets.
1.2. Organization

The remainder of this paper is organized as follows. We first
introduce the formulation of commute time and discuss its inter-
esting properties in Section 2. Then, the commute time guided
transformation will be proposed in Section 3. Discussions and
experiments of random walk for face recognition are conducted
in Section 4. Section 5 concludes the paper and provides some dis-
cussions about future works.

2. Commute time and its properties

Before introducing the proposed CTG model, in this section, we
will first give the definition of commute time (CT) and provide
some discussions about its interesting properties that are mostly
related to manifold learning.

2.1. Formulation of commute time

The calculation of commute time is an old topic in the areas of
applied mathematics, physics and the field theory. Without loss of
generality, in this paper, we adopt a Markov based calculation as it
is the most straightforward one.

We start the introduction from a probabilistic random walk,
which is mainly based on the graph topology. Accordingly, we de-
fine a weighted, undirected graph G with a symmetric weight Wij

for the edge between nodes i and j. The value of Wij represents
the degree of affinity between the two nodes. Wij = 0 means that
there is no direct connection between them. There are many ways
to construct such a graph, we will elaborately discuss them in the
experimental part.

The probability that a random walk travels from node i to its
connecting node j is defined via

pij ¼
WijP

t
Wit

; t 2 hðiÞ; ð1Þ

where h(i) is a set containing all the nodes connected to node i.
From the definition of travelling probability pij, it is obvious that
the larger the connecting weight is, the more probably the random
walk will travel via this way.

Due to the probability behavior of random walk, one critical
problem comes out inevitably. A random walk could follow differ-
ent paths to travel between a pair of nodes, and the corresponding
time cost could be quite different. Fortunately, the commute time
is a statistical expectation, which is a fixed value. It represents the
average time that a random walk travels around a pair of nodes.
The commute time is related to the global structure of the graph
rather than a single path or local connections only [18].

In this paper, we mainly follow the results in [19] which indi-
cated that the formulation of the commute time between a pair
of nodes i and j, i.e., ctij is defined as:

ctij ¼ volG� lþii þ lþjj � 2lþij
� �

; ð2Þ

where volG ¼
P

ijWij is the volume of a graph, and lij = [L+]ij in which
L is the Laplacian matrix and (�)+ stands for Moore–Penrose general
inverse. The definition of L for a graph is given as follows:

L ¼ D�W; ð3Þ

where W is the weight matrix and D is the degree matrix in the spec-
tral graph theory. The degree matrix is defined as:

D ¼ diag
X

j

Wij

 !
; ð4Þ

where diag is the diagonal operation.
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2.2. Property of commute time

Based on the introduction of commute time above, some of its
positive properties for manifold learning can be summarized.

1. Different from traditional ‘p norm based distance, commute
time is calculated from a probabilistic model. It describes the
relationship of data by considering all the feasible paths
between them. Therefore, commute time could break the
restriction of traditional Euclidean norm and can thus reveal
the manifold distribution of data much better [11].

2. Commute time of random walk is a very robust metric. It is not
related to any single path on the graph. Thus, it is robust to
noise.

3. Compared with other graph distances, for example the geodesic
distance, the calculation of commute time is much more effi-
cient which just requires to solve a Moore–Penrose general
inverse problem (see Eq. (2)).

These positive properties naturally facilitate CT be an ideal met-
ric for manifold learning.
2 We will explain the meaning of concordance in the next subsection.
3 It is only the objective function of the CTG optimization. The whole CTG

optimization comes with a constraint. The reason for the constraint will become clear
latter.
3. Commute time guided transformation

While CT has those positive properties as above, most existing
algorithms on CT embedding are graph-dependent that can only
handle the data on the initial training graph [11]; and therefore
are only suitable for applications related to data clustering. But
there are many other computer vision tasks beyond the scope of
data clustering, e.g. recognition. Can we take the advantage of
the robustness of the CT metric and, meanwhile, generalize the
learning ability to the out-of-sample data? In this section, we will
propose a graph-independent CT embedding algorithm called com-
mute time guided (CTG) transformation.

3.1. Commute time preserving strategy

In most embedding optimizations, the prominent purpose is to
map high dimensional data into a low dimensional subspace, in
which the original metric is preserved. Before explaining our algo-
rithm, we will first define some notations. We define the node on
the graph as Ni 2 RM�1. Commute time between Ni and Nj is de-
fined as ctij. yi 2 Rm�1 represents the data in the transformed sub-
space, m�M. The Euclidean distance between data yi and yj in the
subspace is dij = kyi � yjk.

As stated above, the general idea behind embedding techniques
is based on the preservation strategy. How to preserve the com-
mute time in an embedding space? To address this issue, the most
straightforward approach is the quantity preservation strategy.
The quantity preservation means that the numerical quantity of
the Euclidean distance in the subspace should be the same as the
original commute time. The optimization can be designed as:

ðMDS� CTÞmin :
X

ij

kdij � ctijk2
: ð5Þ

(5) is an explicit preservation strategy since the optimal solution to
it, if can be found, is dij = ctij. The explicit preservation method
sounds reasonable, however, it is not suitable for the recognition
task here. Essentially, the optimization in (5) is the classical Mul-
ti-dimensional Scaling (MDS) [20]. It is the same as the framework
used in the Isomap [6]. The only difference is that Isomap preserves
the geodesic distance instead of the CT. Although this MDS frame-
work is straightforward, it has two significant drawbacks.

First, as indicated in [20,21] and many other related works,
there is no closed-form solution to the MDS optimization. Many
known algorithms to solve it are based on iterative approaches
which is computationally expensive; and moreover is likely to
get stuck in local optimum. The second drawback of MDS frame-
work is the same as existing commute time embedding techniques,
i.e., it is graph-dependent. The results of MDS are the coordinates
of data (i.e. yi and yj) in the embedding space. To the best of our
knowledge, it cannot be generalized to the data that are not on
the initial graph.

Due to these two reasons, we will not adopt the MDS frame-
work to preserve the commute time in the subspace. Accordingly,
we design a CTG optimization that implicitly preserve the CT in the
subspace. The implicit preservation means that we are not going to
strictly keep the same CT quantity in the mapped space. Instead,
the rank or concordance2 of CT are preserved in the mapped space.

3.2. Commute time guided transformation

According to previous discussions, we propose the CTG objec-
tive by using the commute time as a measure of affinity between
two nodes:

min
X

ij

d2
ij

ctij
¼min

X
ij

kyi � yjk
2

ctij
ð6Þ

The meaning of (6) is self-evident: ctij is a penalty term. If ctij is
small, then, dij should also be small enough to minimize the whole
objective. A small ctij with a large dij may contribute a large quantity
to the objective function which greatly affects the global minimiza-
tion. On the contrast, if ctij is large, it allows a comparable large dij in
the mapped space. According to these discussion, it is clear that the
value of commute time is used as a penalty to guide the optimiza-
tion from graph to the subspace, which is the main reason that we
call it commute time guided (CTG) transformation.

Moreover, in order to generalize the learning ability of CTG to
unknown samples, a unitary projection matrix X 2 RM�m is intro-
duced. XT maps the node Ni 2 RM to a point yi 2 Rm in the sub-
space, i.e., yi = XTNi. Accordingly, we get the objective function3

of CTG model,

ðCTG Obj:Þ min
X2RM�m

X
ij

kXT Ni �XT Njk2

ctij
ð7Þ

We write the objective in (7) in the form of matrix computation by
the trace term:

X
ij

kXT Ni �XT Njk2

ctij
¼
X

ij

1
ctij

tr½ðXT Ni �XT NjÞðXT Ni

�XT NjÞT �

¼ tr
X

ij

ðXT Ni �XT NjÞðXT Ni �XT NjÞT

ctij

" #

¼ 2tr
X

i

XT NiN
T
i X

cti:
�
X

ij

XT NiN
T
j X

ctij

" #

¼ 2trðXT NðA� GÞNTXÞ ð8Þ

where N = [N1,N2, . . . ,Nn] (n is the number of nodes on the graph);
G ¼ ½gij� ¼ ½1=ctij�ðG 2 Rn�n), and ctij is the commute time between
nodes i and j; cti: ¼

P
jctij and therefore, A 2 Rn�n is a diagonal ma-

trix whose entries are the sums of the columns (or the rows sinceG
is symmetric) of G. tr(�) is the trace of a matrix and we know that for



(b) Quantitative evaluations

(a) Commute time and squared Euclidean distance pairs.

Fig. 1. Experimental verifications for preservation effectiveness of CTG
optimization.
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any matrix P, kPk2 = tr(PPT). The second equality in (8) holds be-
cause, for any scalar aij and any matrix Q,

P
ijaijtrðQ Þ ¼P

ijtrðaijQ Þ ¼ tr
P

ijðaijQ Þ
h i

Although we gave the matrix explanation to the objective func-
tion, it cannot be directly minimized. It is because that if no extra
constraint was added, the objective in (6) will map all the data to
the same point, i.e. yi = 0, "i. Therefore, some regularization terms
are needed to avoid the trivial solution. We follow the general idea
in LE [8], LPP [9] and GE [1] to add such a constraint.

In the transformation (8), matrix A provides a measure of the
relative importance of training samples. The larger the element
Aii is, the more important the node yi will be for the final solution
[9]. Following the same constraint in [9], in our formulation, we
also impose a constraint as follows:

XTNANTX ¼ I; ð9Þ

where I is the identity matrix. Therefore, the CTG optimization is
described as follows:

ðCTGÞ min
X2Rm�M

tr½XTNðA� GÞNTX�

s:t: XTNANTX ¼ I;
ð10Þ

This is a problem of constraint optimization, which can be solved
using the Lagrange Multiplier [22],

LðX;KÞ ¼ trðXT NðA� GÞNTXÞ � hK; ðXT NANTX� IÞi ð11Þ

where K is the lagrangian multiplier, which is a diagonal matrix
K 2 Rm�m. m is the dimension of data in the embedding space. h�i
is an inner product of two matrices. The optimal solution to the pro-
jection can be obtained by setting rXL(X, K) = 0. After some deri-
vations (see Section A), the minimization of (11) reduces to a
generalized eigen-decomposition:

NðA� GÞNTX ¼ KNANTX: ð12Þ

According to the optimization theory, with the objective of mini-
mizing the above equation, those eigenvectors corresponding to
the smallest eigenvalues are selected as the linear projections. Be-
sides, the objective in (10) is convex and thus the minimum is the
global optimum. These projection vectors are utilized to extract fea-
tures for recognition.

3.3. Preservation verification

As stated in the last subsection, the CTG optimization could
implicitly preserve the commute time in the subspace. In this part,
we will perform some empirical observation to verify that the pro-
posed model is effective enough to represent the commute time
using the squared Euclidean distance. For each ctij on the original
graph, we can get its corresponding squared Euclidean distance
ds

ij in the embedding space. We denote such a correspondence as
ðctij; d

s
ijÞ. Suppose there are n nodes on the graph, we can get

1
2 nðn� 1Þ correspondences. In order to verify that the CTG model
can well preserve the commute time in the subspace, we use the
AR face dataset [23] to conduct experiments.

AR dataset: The AR dataset consists of over 4000 frontal images
for 126 individuals. For each individual, 26 pictures were taken in
two separate sessions. These images have facial variations caused
by illumination change, expressions, and occlusion. All the face
images are normalized to a resolution of 64 � 64 pixels based on
the eye locations, and color images are converted to grayscale ones.
In order to enhance the global contrast of the images and reduce
the effect of uneven illumination, histogram equalization is applied
to all the images.

In the experiment, we randomly select two faces of each subject
in AR dataset as nodes on the training graph. The graph is spanned
using KNN method. Please refer to Section 4.2 for detailed discus-
sions about the initial graph topology. Then, CTG optimization is
performed on the graph and all the nodes are projected into the
subspace. Fig. 1a plots all the correspondences of the commute
time and the squared distance. The dimensions of the embedding
space is m = 20. From the figure, it is observed that the commute
time and the squared distance have high correlations. Besides,
(ct, ds) correspondences densely distribute on the left-down part
in Fig. 1a. It is because that most CTs on the initial training graph
are in this area. In order to further investigate such correlations,
some quantitative analysis will be performed.

First, we calculate the widely used linear correlation coefficient
cct, dis of the two sequences:

cct;dis ¼

P
ij
ðctij � ctÞ ds

ij � ds
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ij
ðctij � ctÞ2

P
ij

ds
ij � ds

� �2
s

Besides, as stated above, the CTG model only implicitly preserves
the original commute time. It means that a large commute time
(ctij) on the graph will induce a large squared distance ds

ij in the sub-
space and vice versa. To judge this critical property, we define the
concordant pairs rate.

Definition 3.1. Let S ¼ ctij; d
s
ij

� �
;1 6 i 6 n; n

2þ 1 6 j 6 n
n o

be a set
recording all the commute time and squared distance correspon-
dences. Any pair ðctmn; d

s
mnÞ and ctpq; d

s
pq

� �
are said to be concor-
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dant if the ranks for both elements agree, that is: if ctmn > ctpq then
ds

mn > ds
pq; or if ctmn < ctpq then ds

mn < ds
pq. They are said to be

discordant, if ctmn > ctpq and ds
mn < ds

pq or if ctmn < ctpq and
ds

mn > ds
pq.

We denote C as the number of concordant pairs in the set S and
D as the number of discordant pairs.The concordant pairs rate qcan
be computed via

q ¼ C
C þ D

These two quantitative scores are reported in Fig. 1b, where the
dimension of data in the subspace, i.e. m, varies from 1 to 20. From
the result, it is obvious that both the linear correlation coefficient
and the concordant pairs rate are more than 0.74 (maximal 1),
which demonstrate that the squared distance the original commute
time have high correlations.

From both the empirically observation (Fig. 1a) and the quanti-
tative analysis (Fig. 1b), it is concluded that the proposed CTG
model is an effective projection strategy to implicitly preserve
the original commute time in the subspace. In the next section,
thorough experiments on face recognition will be conducted to
verify the feature extraction functionality of CTG method to out-
of-sample data.

4. Random walk for face recognition

In the previous part, we have proposed the CTG method for
dimensionality reduction. In order to verify the effectiveness of
the proposed method, in this part, the CTG will be used to extract
features for face recognition.

4.1. Face recognition using the CTG feature

In order to use CTG for face recognition, a graph topology should
be first constructed. On the graph, the nodes are from faces in the
training set, and the connections between nodes are established.
There are a number of methods for graph construction. However,
in this part, we will omit them. The detailed discussions on graph
constructions will be extended in the next subsection.

After the construction of the graph, the CTG method is imple-
mented on the face graph to extract the projection matrix X.
Fig. 2 illustrates the optimal projections derived by using the
eigenfaces [2], the fisherfaces [3], the Laplacianfaces [9], and the
CTGfaces, respectively, based on the Yale face dataset. Our pro-
posed CTGfaces have similar appearances to the Laplacianfaces, be-
cause both our algorithm and LPP are based on manifold.

For recognition purpose, both the training and testing faces are
projected into the subspace via X. The low dimensional points in
the subspace are referred as features for face recognition. These fea-
tures are identified by a nearest-neighbor classifier. The complete
procedures of our face recognition algorithm are listed in Algorithm
1. In the algorithm, Nearest(yi, F) is a function which returns the la-
bel ‘i for the ith testing face using the nearest-neighbor classifier.

Algorithm 1. Face recognition using CTG features

Input: Training faces set N = {N1,N2, . . . ,Nn} and testing
faces set f = {f1, f2, . . . , ft}
Training:

1. Span N as a graph C = {N, W};
2. Compute the commute time matrix CT using (2);
3. Compute matrix G with each entry Gij = 1/ctij and matrix

A ¼ diag
P

jGij

� �
;

4. Solve eigen-decomposition problem in (12) and get the
optimal projection matrix X;

5. Embed nodes set N into the subspace and get the feature set
F = {Fi = XTNi, i = 1,2, . . . ,n};
Recognition:

6. for k 1 to t do// t is the number of faces to be

recognized

7. // yk is the feature.
8. Embed test faces into the subspace yk = XTfk;
9. ‘k Nearest yk, F// label the testing face.
10. end

Output: Recognized face labels ‘

4.2. Graph topology and graph similarity discussions
As discussed above, the training procedures of the CTG method
rely on a graph topology. Therefore, before performing the pro-
posed CTG method on benchmark datasets for face recognition,
in this part, we will first discuss which graph topology is most suit-
able for CTG learning. There are a number of graph constructing
methods and we will review some widely used ones, i.e., K-Near-
est-Neighboring (KNN), Gaussian KNN (G-KNN) and ‘1 graph
[24]. ‘1 graph is also known as sparse graph.

KNN graph and G-KNN graph are two typical methods for graph
construction. KNN graph considers that one node only connects
with its nearest k neighbors with the connecting weights defined
as one. G-KNN is an extension of the KNN method, which uses a
Gaussian kernel to penalize the Euclidean distance between two
nodes. With the recent progresses of compressed sensing [25], a
novel concept on constructing graph with sparse representation
has been proposed. It considers that each node on the graph can
be represented by all the other nodes via sparse classification.
The basic formulation to construct the sparse graph is given as:

min kaðiÞk‘1

s:t: NT
i ¼ aðiÞNrðiÞ;

ð13Þ

where k � k‘1 is the ‘1 norm [25]; Ni 2 RM represents the ith node,
NrðiÞ 2 Rðn�1Þ�M stands for a matrix that is stacked by all the nodes
on the graph excluding node i; and aðiÞ 2 R1�ðn�1Þ is a sparse approx-
imation , in which the positive solutions will lead to weight connec-
tions, i.e., if aðiÞj > 0, then, Wij = 1. Sparsity Induced Graph (SIG) is an
extension of the unweighted sparse graph, which denotes the
weights between nodes via a Sparseness Induced Similarity (SIS)
[26]. The weights of SIG is defined via

Wij ¼
max aðiÞj ;0

n o
Pn�1

k¼1 max aðiÞk ;0
n o :

We have stated four graph topologies: two weighted graphs (G-
KNN and SIG) and two unweighted graphs (KNN and SG). In order
to justify which graph topology is the best one for face recognition,
we will perform the CTG methods on these four graph topologies,
respectively. Besides, the commute time will be compared with
other graph similarities, e.g. locality similarity (LPP) and geodesic
similarity (Isomap). For locality similarity, the LPP method is di-
rectly perform on different graph topologies. The geodesic projec-
tion (GEO) can be derived from (7), where the commute time
between nodes (ctij) is replaced by the geodesic distance between
them. The experiments are based on two public face datasets, i.e.
the AR dataset [23] (has been introduced previously) and the FERET
dataset [27].

The FERET face recognition dataset is a set of face images col-
lected by NIST from 1993 to 1997. There are more than 1100 sub-
jects in the FERET dataset. In each subject, the faces are captured



(a) Eigen-faces

(b) Fisher-faces

(c) Laplacian-faces

(d) CTG-faces

Fig. 2. The first six projections extracted from the Yale dataset based on (a) PCA, (b) LDA, (c) LPP, and (d) CTG.
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via different poses, under various illuminations and with different
expressions. In our experiment, we only use the frontal faces and
the faces whose pose angles are less than 15�. Prior to processing,
the faces are registered to each other based on the eye locations,
and are normalized to the resolution of 64 � 64 pixels. The illumi-
nation histogram equalization is applied to all the images.

In the experiment, we randomly select half of faces in AR data-
set and FERET dataset as training samples. The other half of faces in
each dataset are treated as testing samples. Randomly choosing the
training set ensures that the results and conclusions will not de-
pend on any special choice of the training data. We follow steps
in Algorithm 1 to conduct experiments on face recognition and it
is repeated for 10 times. The average recognition rates on different
graph topologies with different graph similarities are shown in
Fig. 3.

In the AR dataset, commute time outperforms geodesic distance
and locality similarity on KNN, GKNN, Sparse Graph and Sparse-
ness induced graph. Commute time achieves the recognition rate
of 80.2%, 76.3% and 81.2% on these three graph topologies, respec-
tively. However, on the SIG, geodesic distance is the best one
whose recognition rate is 73.2%, which only makes the improve-
ments of 0.5% on commute time metric. The detailed comparisons
on AR dataset are shown in the left part of Fig. 3. Among all the
graph results, the highest recognition rate on AR dataset is
achieved by the commute time on the sparse graph (81.2%). The
second high recognition rate is obtained by random walk on the
KNN graph (80.2%).

In the FERET dataset, the commute time based method is the
best one on all the four kinds of graph structures. It achieves the
recognition rate of 78.3%, 72.3%,79.4% and 77.7%, respectively. Geo-
desic distance gains similar performance as commute time, the
recognition rates of which are 72.1%, 71.2%, 79.3%, and 76.2%,
respectively. Both these two metrics outperform the locality
similarity. The highest recognition rate is also achieved on the
sparse graph with random walk. The recognition results on FERET
dataset are shown in the right part of Fig. 3, based on which, some
discussions on graph similarities and graph topologies are
extended.

4.2.1. Graph similarity
Commute time and geodesic distance outperform the locality

similarity on the face recognition test. It may be ascribed to that
the locality similarity only represent the local relationship of con-
necting nodes. However, the commute time and geodesic distance
could reveal both the local and global similarities of nodes no mat-
ter whether they are connected or not.

Commute time and geodesic distance achieve similar recogni-
tion performances. However, compared with geodesic distance,
the commute time owns one prominent advantage. The calculation
of commute time is much more efficient than the calculation of
geodesic distance. The calculation of geodesic distance is mainly
based on the greedy search, which is quite expensive. But the cal-
culation of commute time just requires to solve a general inverse
problem (see Eq. (2)). On the face manifold spanned by faces in
AR dataset, it requires more than 47 s to calculate the geodesic dis-
tances between all pairs of nodes. and only 6 s to compute the
commute time.

4.2.2. Graph topology
Among these four graph topologies, sparse graph is the best one

for manifold based face recognition. Almost all the three graph
similarities achieve their highest recognition rates on the sparse
graph. However, there is one significant drawback of the SG. The
construction of SG graph is too much time consuming, which



Fig. 3. The comparisons of commute time with different graph similarities on different graph topologies: K-Nearest-Neighbors (KNN), Gaussian KNN (GKNN), Sparse Graph
(SG) and Sparseness Induced Graph (SIG).

Table 1
Maximum recognition rates (%) on different datasets.

Yale PIE AR FERET

Linear subspace PCA 87.4 95.5 62.2 63.6
LDA 90.2 98.3 61.1 65.1

NMF 85.5 95.8 63.2 64.2

Sparse SR 94.3 93.3 76.8 73.1

KNN graph LPP 90.7 98.1 74.5 66.5
GEO 91.5 96.3 72.3 72.1
CTG 93.5 99.2 80.2 78.3
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requires to solve a convex ‘1 minimization for all the nodes. In the
AR dataset, it requires as many as 1267 s (21 min) to construct the
sparse graph. However, for the KNN graph, the graph topology can
be constructed in 12 s.4 Besides, the performances on the KNN graph
is also comparable good, which is better than GKNN and SIG. There-
fore, it makes a conclusion here that if one would like to get the best
recognition performance, the sparse graph is recommended. How-
ever, by taking both the effectiveness and the efficiency into consid-
eration, the KNN graph is the most suitable one for feature
extraction.
Sparse graph LPP 91.2 97.7 75.2 71.2
GEO 90.1 98.1 78.2 79.3
CTG 93.7 98.6 81.2 79.4
4.3. General evaluations on benchmark datasets

In the preceding subsection, we have discussed the graph topol-
ogies and some graph similarities for face recognition. It is found
that the random walk on the sparse graph or on the KNN graph
achieves better recognition performances. In this part, we will ex-
tend these findings to practical face recognition tasks. The pro-
posed CTG will be compared with other state-of-the-art methods
for face recognition, e.g., PCA [2], LDA [3], NMF [4], Sparse Repre-
sentation (SR) [28], LPP [9] and geodesic projection (GEO). Four
standard face datasets used in the experiments are: the Yale data-
set [29], the AR dataset [23], the PIE dataset [30], and the FERET
dataset [27]. Here, we will only introduce the Yale and PIE datasets
because the AR and FERET datasets have been introduced
previously.

The Yale face dataset was constructed at the Yale Center for
Computational Vision and Control. It contains 165 grayscale
images of 15 individuals. The images demonstrate variations in
lighting condition (left-light, center-light, right-light), facial
expression (normal, happy, sad, sleepy, surprised, and wink), and
with/without glasses.

The CMU PIE face dataset contains 68 subjects with 41,368 face
images as a whole. The face images were captured by 13 synchro-
nized cameras and 21 flashes, under varying pose, illumination and
expression. We use all the frontal faces with different illuminations
and expressions in this test.

In these datasets, each face image is normalized to the resolu-
tion of 64 � 64 pixels based on the eye locations. The color images
are converted to the grayscale with 256 levels per pixel and the
histogram equalization is applied to all the images to reduce the
disturbance of uneven illuminations.

For recognition, we randomly select half of faces from one sub-
ject as training samples and the other half are for test. For compu-
4 The computer for implementing this algorithm is config with a Dual core 2.4 GHz
CPU and a 4G RAM. The programs are operated on MATLAB 2008.
tational efficiency, the face images are preprocessed by PCA. The
implementations of the subspace based recognition algorithms
are quite similar to the steps in Algorithm 1. For sparse represen-
tation, which is not a subspace-based-method, we strictly follow
the procedures in [28] and use the SolveLasso solver in sparse
lab5 for ‘1-norm minimization. For KNN graph construction, the va-
lue k is fixed by nt � 1 where nt is the average number of training
samples for one subject. We show the recognition rate of manifold
based algorithms on two graph topologies, i.e., KNN and sparse
graph.

In the experiment, both the training and testing procedures are
repeated for 10 times and the average recognition rates are re-
ported. The maximal recognition rate of each method on four data-
sets are tabulated in Table 1 and their corresponding ROCs with
different numbers of projection vectors are shown in Fig. 4.6 In
the table, the highest recognition rates are marked with bold letters.
The results show that our random walk based method can achieve
better performance levels than the other algorithms, in general.
We will discuss the results on four datasets, respectively.

In Yale dataset, there are no significant differences among all
the recognition methods. Generally speaking, the manifold based
algorithms outperform PCA and NMF. Among the manifold based
algorithms, CTG outperforms the other two. However, in Yale data-
set, the best recognition rate is achieved by sparse representation
(94.3%) which owns 0.6% improvements to the CTG on the sparse
graph and has 0.8% improvements to the CTG on the KNN graph.
In the PIE dataset, CTG on the KNN graph achieves the best perfor-
5 http://sparselab.stanford.edu/
6 For the manifold learning algorithms, we just show the ROCs on KNN graph in

these figures.

http://sparselab.stanford.edu/


(a) Face recognition results in Yale dataset. (b) Face recognition results in PIE dataset.

(c) Face recognition results in AR dataset. (d) Face recognition results in FERET.

Fig. 4. Recognition rate versus different feature dimensionality based on the four different datasets.
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mance. SR loses its effectiveness since there are many faces with
slightly pose variations. The basic assumption made in the SR is
that it could only recognize frontal faces [28].

In Yale and PIE datasets, the improvements of CTG to other
methods are not that significant. These two datasets are quite
simple, on which typical algorithms can already achieve good per-
formances. But, with the complicated and large datasets e.g. AR
and FERET datasets, the manifold distribution of data will come
out.

In the AR and the FERET datasets, three manifold based methods
(LPP, GEO and CTG) significantly outperform linear subspace meth-
ods (PCA, LDA and NMF). Averagely, the manifold based ap-
proaches make about 15% improvements to the linear subspace
methods. Moreover, CTG outperforms the other two manifold
based methods on both the KNN graph and the sparse graph.

It is also interesting to note that the proposed CTG method is
robust to graph topologies. The recognition performances by CTG
are consistent on different graphs. However, the geodesic embed-
ding (GEO) is much sensitive to graph topology. It achieves better
performances on sparse graph while performs poorly one KNN
graph.
4.4. Robustness verification

In previous parts, the experimental results on benchmark data-
sets demonstrate the effectiveness of the proposed CTG for general
verification. In this part, we will further extend discussions to
investigate the robustness of the CTGfaces to noises. The noise on
faces always means illuminations and occlusions. Accordingly, in
this part, two experiments on face recognition with illuminations
and occlusions will be conducted. In order to avoid the heavy com-
putational cost of the ‘1 minimization, all the graph based algo-
rithms are performed on the KNN graph.
4.4.1. Face recognition with illumination
In this part, we will use the CTG-features to recognize faces cap-

tured under various illumination conditions. For this purpose, the
extended Yale-B [31] is used.

The extended Yale-B dataset consists of 2414 frontal-face
images of 38 individuals [31]. Each image is converted to grayscale
and normalized to a size of 192 � 168. The histogram equalizations
are applied to all the images. It worths noting that all the faces in
Yale-B dataset are captured under various laboratory-controlled
lighting conditions. Therefore, the extended Yale-B dataset is a
desirable dataset for illumination test. Some faces captured under
different lighting conditions in Yale-B are shown in Fig. 5.

There are 38 subjects in the extended Yale-B dataset. For each
subject, we randomly select half of the images for training (about
32 faces per person) and the other half are for test. We will com-
pare the CTG methods with PCA, LPP, GEO and SR. The training
and testing procedures are repeated for 10 times. The average re-
sults and the ROCs are shown in Table 2 and Fig. 6, respectively.

The recognition results demonstrate the robustness of the CTG-
faces for face recognition with illumination variations. The mani-
fold based methods (CTG, GEO and LPP) outperform linear
method, i.e., PCA. These findings also serve to back up the claims
of some previous works, e.g. [9,1], that manifold-based-approaches
are effective to recognize faces with illumination variations. Be-
sides, on the same manifold, the CTG outperforms both LPP and
GEO. The improvements may be ascribed to the robustness of com-
mute time metric for manifold learning. The recognition rate of SR
is about 4% lower than CTG in Yale-B dataset.

4.4.2. Occluded face recognition
Occluded face recognition is an important topic in computer vi-

sion [32]. The occlusions on the faces are always regarded as sparse
noises [28]. In this part, we will test the CTG method to recognize
the occluded faces in AR dataset.



Fig. 5. Some faces under different lighting conditions from the extended Yale-B dataset.

Table 2
The maximal recognition rates (%) with Illuminations (Yale-B).

Testing set PCA SR LPP GEO CTG

Yale-B 67.8 73.5 71.1 76.2 80.26

Table 3
The maximal recognition rates (%) with occlusions (AR).

Testing sets PCA SR LPP GEO CTG

AR1 (Sunglass) 52.2 62.4 56.2 58.3 60.9
AR2 (Scarf) 22.4 49.3 31.2 36.7 43.6

Y. Deng et al. / Computer Vision and Image Understanding 116 (2012) 473–483 481
In AR dataset, for each subject, there are six occluded faces.
Three faces are occluded by sunglasses and three are corrupted
by scarfs. Some of these occluded faces are shown in Fig. 7. We di-
vide them as two sub-sets which are denoted as AR1 (for occluded
faces with sunglasses) and AR2 (for occluded faces with scarfs),
respectively.

In the previous face recognition experiments on AR dataset, the
occluded faces are treated the same as the non-occluded faces dur-
ing both the training and testing procedures. However, in order to
Fig. 6. Illumination test: face recognition rates with

Fig. 7. The occluded fa
highlight the CTG method for occluded face recognition, in this part
we use the normal faces in AR dataset for training and the occluded
faces in AR1 and AR2 are for test.

This task is much challenging since the algorithm should recog-
nize occluded faces from the completed training samples. Since
there are no random selection strategy in this training and testing
procedures, we just perform the experiment once. The recognition
results are provided in Table 3 and Fig. 8, respectively.
different feature dimensions in Yale-B dataset.

ces in AR dataset.



(a) Occluded face recognition with sunglasses (AR1).

(b) Occluded face recognition with scarfs (AR2).

Fig. 8. Recognition rate versus different feature dimensionality based on the four different datasets.
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From the results, it is concluded that sparse representation is
the best one for occluded face recognition. The highest recognition
rates on both AR1 and AR2 are achieved by the SR. SR is a robust
method for occluded face recognition [25]. The recognition rates
of other methods are all lower than SR. The drop is especially sig-
nificant on the results in AR2, where SR makes nearly 27%
improvements to PCA.

Among all the methods that are not based on sparse represen-
tation, the proposed CTG method achieves the highest recognition
rate. On AR2, when recognizing faces with great occlusions (scarf),
CTG achieves improvements as high as 6.9% to GEO and 10.6% to
LPP owing to the robustness of commute time metric.

Compared with SR, there is one prominent advantage of the
proposed CTG. The computational cost of SR is much heavier than
CTG. When recognizing faces by SR, it requires to solve ‘1 optimi-
zation for all the testing samples. Averagely, it costs about
13 min to recognize all the faces in AR1 and costs 15 min in AR2.
Nevertheless, the proposed CTG are much fast which can be fin-
ished in 2 min for all the faces in both AR1 and AR2.
5. Conclusions and discussions

In this paper, a graph-independent commute time embedding
algorithm is proposed. This method generalize the learning result
of commute time to the out-of-data samples. When applied to face
recognition, our algorithm outperforms other typical methods on
benchmark datasets. Besides, it is also efficient and effective to
learn the faces that are disturbed by noise, e.g. illuminations and
occlusions.

In summary, this paper has proposed a direction for feature
extraction based on a random walk. However, the appeal is not
limited to what is discussed in this paper. For example, in this pa-
per, we have only focused our interest on image-domain-based
features. It is believed that the proposed CTG model and the ran-
dom-walk-based metric are also suitable for transformed-do-
main-based feature extraction. Some transformed-domain-based
features, e.g. garbor features, are powerful tools to cope with occlu-
sions and illuminations. It may be our future destination to com-
bine the CTG methods with the garbor features to further
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improve the performances of CTGfaces for occluded face
recognition.
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Appendix A. Derivations of lagrangian minimization

In (11), h�i is an inner product and we know that for two matri-
ces, hP,Qi=tr(PTQ) = tr(QTP). Therefore, for the sake of computa-
tional simplicity, we replace the second term in (11) by its trace
and get:

LðK;XÞ ¼ trðXT NðA� GÞNTXÞ � trðXT NANTXKTÞ þ trðKTÞ ðA:1Þ

In order to get the optimal solution to X, we set rXL(X,K) = 0. The
derivations of the two trace terms in (A.1) seems to be complicated.
But, it can be greatly simplified by a general law of trace derivation.
For any three matrices, P, Q and W,

@trðWT PWQ Þ
@W

¼ QWT Pþ Q T WT PT ðA:2Þ

Accordingly, we get:

@L
@X
¼ @trðXT NðA� GÞNTXÞ

@X
� @trðXT NANTXKTÞ

@X

¼ XT NðA� GÞNT þXT ½NðA� GÞNT �T �KTXT NANT

�KTXTðNANTÞT

¼ 2XT NðA� GÞNT � 2KTXT NANT ðA:3Þ

The third equality in (A.3) holds because all the matrices K, A and G
are symmetric. We set (A.3) to be zero and get the generalized ei-
gen-value decomposition equation in (12).
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